Robust GPGPU plugin development
for RapidMiner

Andor Kovacs, Zoltan Prekopcsak
vermilion.andor@qgmail.com, prekopcsak@tmit.bme.hu
Budapest University of Technology and Economics

Abstract

In recent years, significant number of papers [1][2] have been pub-
lished about general-purpose graphical processing unit (GPGPU) pro-
grams which are able to accelerate computationally intensive applica-
tions by several times over conventional CPU programs. These papers
raise an important question: With the current developer tools is it pos-
sible to integrate these GPU programs into a major industry application
without serious performance degradation?

We chose the k-Nearest Neighbors algorithm and one of the most
popular open source data mining tool, RapidMiner, to analyze the po-
tential of GPU plugin development.

1 Introduction

As GPGPU capable graphics cards become cheaper, there is an increasing
demand for such software which is able to take advantage of the GPUSs’ op-
portunities. However these programs are a lot awaited in some application
areas, one of these is data mining. During our work, we chose the k-Nearest
Neighbors algorithm (k-NN) which is widely used for classification, machine
learning and pattern recognition by data miners, but unfortunately its high
computational complexity is a serious limitation. This paper mainly focuses
on the integration of the k-NN algorithm’s GPU version into RapidMiner,
while our previous paper focused on the GPU implementation itself [3].

The result of our work is a plugin called RapidMiner for Cuda Environment
(RACE). Tt was implemented in NVIDIA’s CUDA C language. Due to the
fact that RapidMiner was written in Java, a binding for CUDA was necessary.
It is called JCUDA [4].

The remainder of this paper is organised as follows. Next, we give an
overview of the plugin’s technical background. Section 3 analyses the require-
ments for robust GPGPU plugin development. In Section 4, we introduce

RapidMiner and Section 5 presents the integration of the plugin into Rapid-
Miner. Section 6 describes the structure of the GPU k-NN operator. Finally,
we analyse our plugin and demonstrate it scales well for various input sizes.

2 Technical Background

This section introduces the technologies we used for plugin development.

2.1 GPGPU and CUDA

Compute Unified Device Architecture (CUDA) [5] is a general parallel pro-
gramming architecture. It provides a high-level programming language for the
utilization of the parallel power of the GPU. This architecture greatly sim-
plifies the programmers’ task because there is no need for notable computer
graphics experience and it also allows great scalability.

2.2 CUDA Capable GPU Architectures

CUDA capable cards’ capabilities can be easily classified by a number called
”Compute Capability”. This number consists of two parts: a major and a minor
one. If the GPU is based on the current Nvidia architecture called Fermi the
major value is 2, otherwise it is 1. The complex memory hierarchy of the
Fermi architecture is shown in Figure 1. Fermi’s most important new feature,
compared to the previous architectures, is the global memory L1 and L.2 cache
hierarchy. Some optimizations of the plugin are based on this difference.

2.3 JCUDA

To be able to execute a CUDA C code from Java, a binding called JCUDA
was necessary. It uses the Java Native Interface and allows the programmer to
access all functions of the CUDA C Driver API from Java. Java’s references
are not flexible enough therefore JCUDA defines two pointer classes: one for
CPU and another for GPU memory allocation. JCUDA uses the CUDA Driver
APT to execute precompiled kernels, which are CUDA functions executable on
a GPU.

Parallel Thread Execution [5] (PTX) is Nvidia’s intermediate language
used in CUDA environment. The CUDA compiler (called NVCC) translates
CUDA C source code to PTX. The GPU’s driver contains a just-in-time com-
piler which translates PTX into an executable GPU architecture specific bi-
nary code. We chose PTX because its architectural flexibility and forward
compatibility.

_~“Multi-Processor N

" Multi-Processor 2

<" Multi-Processor 1

t Shared Memory

Figure 1: Nvidia Fermi GPU memory and cache hierarchy [5]

3 Requirements

After the presentation of the technologies, we analyze the essential require-
ments for robust GPGPU plugin development. The most important require-
ment is that the plugin has to provide the same features like its CPU equivalent
and the users have to be able to use the plugin like the CPU version and easily
take advantage of the plugin’s speedup without any GPU specific knowledge.

The second most important feature is about improving the scalability of
the previous implementations. That is very crucial because data mining on the
GPU is not a specific area where programmers can easily define the minimum
and maximum size of the input data set. The plugin should perform as fast as
possible even if the size of the input varies by several orders of magnitude [3].

Variables which should be considered:

o Number of elements in the Train set
e Number of elements in the Test set
e Value of k

e Number of attributes

Based on the previous papers, there is no doubt if the size of these pa-
rameters varies by several orders of magnitude, then a single kernel is unable
to provide that high level of performance scalability and flexibility which is
achievable by the memory hierarchy of the GPU.

Learning from the previous solutions’ mistakes, the plugin should be able
to cut the problem into sub-problems because of the parallel execution of the
program. A relatively small input data can cause running out of the GPU’s
global memory. Therefore, the plugin should be able to solve this efficiently.

4 Introduction to RapidMiner

RapidMiner is an open source software which offers high variety of data mining
functions for the users. Its developers wanted to create an easy-to-use tool for
data mining. They have achieved this by a user-friendly graphical interface.
The users do not need to be able to handle a complex command-line interface
nor do they need to learn any scripting languages.

4.1 RapidMiner’s Data Storage Strategy

RapidMiner’s strategy is based on a class called ”Ezample Table”. It was
designed for storing actual raw data. In this representation, the data does not
have any meaning yet because most of the data is saved as a single or a double
precision floating point number. RapidMiner does not duplicate raw data, in
contrast of that it just creates views -called ”FEzample Set”- for the ”Example
Table”. These views can contain any number of columns and any rows of the
”Ezample Table” in any order [6].

In the next subsection, we explain a really important thing, how the users
can interact with the CPU implementation of the k-NN algorithm.

4.2 RapidMiner’s k-NN Operator

Functions in RapidMiner are called operators. These are simple rectangles on
the user interface. Nearly all of them have input and output ports. The users
can place any number of these operators on the interface of the RapidMiner
and they can easily wire them together by connecting one operator’s output
to the other’s input. As a result, when the first operator finishes its execution
it sends the result object through the wire to the input of the next opera-
tor. Therefore, the user can create workflows from these operators. The usual
workflow of the CPU based k-NN is shown in Figure 2.

In this example, there are three types of operators. The first one is called
"Read CSV”. Tt reads a file into the memory, which consists of comma-

Read CSV k-HH

L'% out) (ta m mod :1

8 U = Apply Model (2)
- (] mod —~ lab [y
Read CSV (2) Qi 'y mod])

['_‘:% aut :1 o

Figure 2: The CPU version of the k-NN operator on the graphical user interface
of RapidMiner

separated values, and stores them in an Example Table object. After this,
it sends this object to the input of the "k-NN” operator. It modifies this ob-
ject and creates a model from it, which makes the k-NN calculation easier,
then sends this model to its output port called "mod”. As you can see, it is
connected to the "mod” input port of the operator called ”Apply model”. 1t
has another input port. In this case the user wired the second "Read CSV (2)”
to this. This is responsible for the reading of the test set, while the other one
was responsible for the train set, the two important input files of the k-NN al-
gorithm. ”Apply model” executes the whole algorithm and sends the results to
its ”lab” output. The result is an ”Fzample Set which includes a "prediction”
attribute.

5 Integration of the Plugin

In this section we present the integration of RACE into RapidMiner.

5.1 Overview of the Integration

As you can see in Figure 3, RACE connects RapidMiner to the Nvidia CUDA
Driver API through JCUDA and Java Native Interface. This makes the com-
munication with an Nvidia GPU possible.

Do note, that RACE has several CUDA C kernels. We compiled these
kernels to PTX with Nvidia’s official CUDA compiler called NVCC. When
RACE calls these kernels, the Driver API compiles just in time the PTX in-
termediate representation to an executable binary and executes it on the GPU.

Java objects would need more memory space on the GPU and would rise
serious optimization questions. It would not be an efficient solution for the
memory management of the plugin. In conclusion, we used float or double
arrays, because they fit much better for the GPU architecture.

83) RAPID|MINER

CUDA C |
. Kernels

SANVIDIA.

CUDA. |

| NVIDIA. ‘

Figure 3: Overview of the Integration

Page-locked memory is a very important part of the optimization of RACE’s
memory model. With using it, the bandwidth between CPU and GPU memory
is much higher. Due to this, it drastically decreases the time of memory
copies. But unfortunately it reduces the overall amount of physical memory
available to the operating system for paging, so too much page-locked memory
consumption reduces overall performance [5].

5.2 Asynchronous Operation of the Plugin

Figure 4 illustrates how the plugin operates after the slicing of an example
input problem into 3 nearly equal sized slices. The number of slices depends
on the size of the GPU’s global memory and the type of the algorithm. It
should be mentioned, that slicing is only possible for algorithms like k-NN,
which are naturally parallelizable. As we mentioned in the previous section
”Example Table” stores the Test and Train set of the algorithm, and it also
stores the result of the computation. Due to this, RapidMiner will be able to
visualize the results on its user interface.

Figure 4 shows the parallel operations executed on the 3 parts of the input.
While RACE copies the third part of the input file from the Example Table
Java object to the page-locked C double array, meanwhile the GPU does the
computation on the second part. And also at the same time the plugin uses
a special feature of the GPU, which allows computation and memory copy

simultaneously. With this feature, RACE can copy back the previous input
slice’s results to the CPU memory, while the GPU works on the current part.
After this and also parallel with the GPU computation, RACE copies back
the results into RapidMiner’s internal representation.

As you can see, with this solution, the GPU and the CPU can operate
asynchronously and we minimized the time of the memory copies with the use
of page-locked memory. Due to the slicing of the input, there is no need for
high amount of page-locked memory. This is also a very important part of
the optimization. We also used a special feature for the input array to gain
performance. It is called write-combining page-locked memory. It frees up the
CPU’s L1 and L2 cache resources, making more cache available to the rest of
the application. As a result it can improve the plugin’s performance [5].

CPU Memory GPU Memory

Results: JAVA/INI C double Results: CUDA C

‘ array I double array

Figure 4: Asynchronous Operation of the Plugin I

Figure 5 illustrates these parallel processes. You can see the computation

of the 3 slices of an input file. We marked the operations related to the same
slice with the same color.
If you examine the two operations executed on the GPU, you will recognize
that the utilization of the GPU is very high. We have to mention that the
copies form CPU to the GPU are synchronous, it is caused by JCUDA, because
it is very difficult to execute asynchronous operations through Java Native In-
terface.

In contrast, when the GPU starts the calculation, the CPU starts the prepa-
ration of the next slice immediately and after that, it copies back the result
of the previous slice and put it back to RapidMiner. With this method we
minimized the overhead of the communication between RapidMiner and the
GPU.

CPU - Prepare GPU - Distance GPU - Chose k
PEEkCS CPU >GPU Data Matrlx Nearest GPU >CPU Data Load Results
into RapldMlner
~ Transfer

Figure 5: Asynchronous Operation of the Plugin II

5.3 Scalability of the Plugin

As we mentioned in Section 3, we needed multiple kernels for every distance
metric because with these RACE can provide high level of performance scala-
bility and flexibility. We created two decision trees for the current two major
GPU architecture families. These trees help RACE to select the fastest kernel
for the concrete distance metric and size of input. This selection is based on
the size of the training set and number of the attributes. The Fermi architec-
tures decision tree can be observed in Figure 6.

The theoretical basis of these decisions is very complex. For example, notice
that, the Euclidean and the Mixed Euclidean distance (Euclidean distance for

Metric

Euclidean Mixed Euclidean

o Number of
Training Set | _
<512 MB Attrlb_utes <
128
Yes No Yes No
[Numl;er of
+ Attributes < "Cache "Cache only a
128 everything” tile"
Yes No
"Cache "Cache only a
everything" tile"

Figure 6: Decision-tree of the Fermi GPU architecture

numerical and nominal values) branches are different because Mixed Euclidean
distance has higher computational complexity and inside the kernels, it has
different data dependency. Our previous paper gives detailed explanation for
these decisions [3].

6 Structure of the GPU k-NN operator

In this field, our goal was to allow the user to use the GPU operator like the
CPU version. Due to this goal the user does not have to learn any new mech-
anism. And there is another beneficial feature which is related to the correct
use of the Example Table. The GPU and CPU operators can work together
heterogeneously. For example the user can preprocess the data on the CPU
with a built-in RapidMiner operator, use the GPU operator and after that
they can easily visualize the results on the CPU with a built-in tool.

Figure 7 shows the kNNLearner Java class, which realizes the CPU ver-
sion of the k-NN operator. Its most important function is called learn(). It
creates an object which implements the Model interface, from its Example Set
parameter and sends it to the output of the operator.

Figure 8 shows that PredictionModel defines the Model interface’s apply()
method. Tt calls an abstract function called performPrediction(), which was
defined by KNNClassificationModel.

The previously shown Apply Model operator calls this apply() method and
pass the Test set from the operators input as a parameter. Based on this
knowledge we realized that we just had to create a new GPU specific model
class, which also implements the Model interface, so it has an apply() method,

<<Java Class>> <<Java Class>>
@' Operator |<}— (3 GPU_KNN
com.rapidminer.operator com.rapidminer.operator RACE.distance

@ rk{)-v
@ learn{ExampleSet):Model

<<Java Class>>

(3 AbstractLearner
com.rapidminer.operator.learner

i

<<Java Class>>

(9 KNNLearner

com.rapidminer.operator.learner.lazy

@ learn(ExampleSet):Model

Figure 7: CPU and GPU versions of the k-NN Operator

<<Java Interface>>
€ Model

com.rapidminer.operator

@ apply(ExampleSet):ExampleSet
A

<<Java blass»
(35 AbstractModel

com.rapidminer.operator

i

<<Java Class>>
(9 KNNClassificationModel_GPU

com.rapidminer.operator. RACE.distance

@ performPrediction(ExampleSet, Attribute):ExampleSet

<<Java Class>>
(9 KNNClassificationModel

com.rapidminer.operator.learnerlazy

@ performPrediction(ExampleSet, Attribute):ExampleSet

<<Java Class>>
(5 PredictionModel

com.rapidminer.operator.learner

<<Java Class>>

&' performPrediction(ExampleSet, Attribute):Example Set
@ lapply(ExampleSet) ExampleSet;

<% UpdateablePredictionModel

com.rapidminer.operator.learner

Figure 8: CPU and GPU version of the k-NN Model

which starts the execution on the

GPU-specific model and gives it to

k-NN” and it is shown in Figure 7.

Figure 9 illustrates the final result. As you can see the users can interact
with it absolutely like the CPU version, but the next section will present the

GPU. It is also visible in Figure 8. After
we created this model, we just needed to create an operator. It builds up this
the classic Apply Model. Its name is "GPU

performance difference between the CPU and the GPU operator.

Read CSV GPU k-HN
‘;c out [) g med [
o) exa) Apply Model (2)
° Qret)
Resacsv] qu o msp
4 - .
O

Figure 9: The GPU version of the k-NN operator on the graphical user inter-
face of the RapidMiner

7 Experimental Results

Finally, we present the summarized execution times of the operators in Figure 2
and 9. We used a Geforce 480 GTX Nvidia GPU for the measurements, which
is a member of the Fermi architecture family. We compared its performance to
RapidMiner’s built-in k-NN operator, running on an Intel Quad Core 8400
CPU. The distance metric was ”"Mized Fuclidean”, the number of test and
train elements were equal and the number of attributes was 50 for all of the
measurements. On the GPU we used the fastest kernel of the decision tree.
The results are visible in Table 1.

Table 1: Comparison of an Nvidia GPU and a Quad-Core CPU

Number of 5000 | 10000 | 50000 | 100000
elements
GPU k-NN
Computation 0.822 | 1.673 8.1 20.65
time (s):
CPU k-NN
Computation 11 62 1334 3533
time (s):
Speedup (x): 13.38 | 37.05 | 164.69 | 171.09

8 Conclusion

As we can see in the previous section, the plugin can be up to 170 times
faster than the CPU version depending on the type of the GPU and CPU.
We successfully created a very robust and flexible solution which scales very
well when the size of the input varies by several orders of magnitude and
perform well compared with the possibilities.

In addition, it should also be mentioned that we did not change anything
on the user interface. So the users can use the GPU version exactly like the
CPU version without any GPU-specific knowledge.

9 Future Plans

We would like to create a GPU extension platform from RACE. It will offer
a very wide variety of functions which will make the integration of an existing
GPGPU application a lot easier. Like the current solution, it will help the
developers to create standard GPU operators, which are able to cooperate
with CPU operators and other GPU operators.

It will be very useful for the developers, who want to create an easy-to-use
GPU software, but they do not want to write a totally new user interface for
it, and due to the standard interfaces and data handling of their software will
be able to cooperate with other GPU programs.

We intend to release the first version of this platform in the third quarter
of 2012, with the k-NN implementation presented in this paper.

References

[1] GARCIA, V., Debreuve, E., BARLAUD, M. Fast k Nearest Neighbor
Search using GPU, Universite de Nice-Sophia Antipolis, Sophia Antipolis,
France, 2008.

[2] KUANG, Q., ZHAO, L., A Practical GPU Based KNN Algorithm, Pro-
ceedings of the Second Symposium International Computer Science and
Computational Technology(ISCSCT ’09), Huangshan, P. R. China, 26-
98,Dec. 2009, pp. 151-155

[3] KOVACS, A., Robust GPGPU plugin development for data mining appli-
cations, POSTER 2012, 16th International Student Conference on Elec-
trical Engineering, Prague May 17

[4] YAN, Y., GROSSMAN, M., SARKAR, V. JCUDA: A Programmer-
Friendly Interface for Accelerating Java Programs with CUDA, Euro-Par
2009 Parallel Processing, Volume 5704. ISBN 978-3-642-03868-6.

[5] Nvidia Cuda C Programming Guide, Version 4.1, 11/18/2011

[6] Approaching Vega: The final descent: How to extend RapidMiner 5.0

