
Cross-validation: the illusion of reliable
performance estimation

Zoltán Prekopcsák, Tamás Henk, Csaba Gáspár-Papanek

Budapest University of Technology and Economics
Magyar tudósok körútja 2., H-1117, Budapest, Hungary

prekopcsak@tmit.bme.hu

http://prekopcsak.hu

Abstract. In data mining, we are often faced with the task of estimat-
ing model performance from training data. This estimation is supposed
to express the expectation of the performance on future, previously un-
seen data and it is very much needed for business decisions and also for
the analyst to compare different models. One of the most widely used
performance estimation technique is cross-validation which has more and
more misuse in these days. This paper describes common mistakes in us-
ing cross-validation that significantly obfuscate the estimations, presents
several numerical examples on how misleading the estimation can be,
and propose a data mining process for ensuring valid performance esti-
mations.

1 Introduction

Data mining is a mature field of research and is increasingly used in business
decision making, intelligent data-driven applications and also by other scientific
fields. The two main branches of data mining are descriptive and predictive
data mining [5]. Descriptive data mining only deals with understanding past
data and extracting actionable knowledge, whereas predictive modeling has the
goal of predicting future outcomes. There has been plenty of learning algorithms
proposed for predictive modeling tasks, but theoretical results show that there
is no best algorithm in general [10].

In practice, we need to compare different algorithms and decide which one to
use for the task at hand. There exist some methods for estimating model perfor-
mance on future data under the assumption that future data has the same dis-
tribution as the training set. The most widely used technique is cross-validation
that we will introduce in the following section. Section 3 will present typical mis-
takes when using cross-validation and provide numerical examples on the effect
of these mistakes. In Section 4, we propose a data mining process for ensuring
meaningful performance estimations and summarize our findings. The examples
for this paper are created with the open-source data mining suite RapidMiner
[1], because it has built-in support for cross-validation, but the underlying princi-
ples and results apply for any data mining project realized with any data mining
software or programming language.



2 Zoltán Prekopcsák, Tamás Henk, Csaba Gáspár-Papanek

2 Estimating model performance

The performance of a predictive model can be measured in many ways for dif-
ferent tasks. For classification, the usual performance measure is the error rate,
but other measures (e.g. recall, precision, AUC) are also proposed in the data
mining literature [5]. For regression, the most widely used measures are the mean
absolute error and the mean squared error. In this paper, we do not specify the
actual performance measure, because the ideas apply to all of them.

The simplest way for the estimation is holdout validation. It means that we
split the original data set to a training set and a test set. The models learn
on the training set and give prediction on the test set, so we can measure the
performance on the test set. The splitting is usually done in the ratio of 70-30
and stratified sampling is used to keep distributions the same in the two sets.
The main problem with simple holdout validation is that the test set is usually
too small, so the variance of the estimation is high, and we are using only 70
percent of the data for training, so the estimate has a pessimistic bias.

In k-fold cross-validation, we are splitting the data into k stratified sets and
run the holdout validation k times with each set being once the test set and all
the others being the training set. The k performance measures are then averaged
to give the overall performance estimate. There is a special case when k equals
the number of examples in the whole dataset, which means that in each fold we
test on only one example and it is called leave-one-out cross-validation. We also
have to mention bootstrapping [4] which is a similar estimation technique that
is based on probabilistic sampling, and most of our results also apply for that,
but for the sake of simplicity we are only describing cross-validation examples.

There has been a lot of theoretical and experimental work on the accuracy
of cross-validation. Some authors state that 10-fold cross validation is the best
of the above methods [6], but propose a more difficult way for model selection
[7]. There are also some probabilistic bounds on the accuracy of the leave-one-
out estimation [3], but other authors state that leave-one-out validation does
not converge to the correct performance as the size of the training set grows
to infinity [11]. In spite of all these arguments, cross-validation is still the most
widely used performance estimation technique in practice.

3 Typical mistakes with cross-validation

We are practicioning data miners ourselves and we are experiencing a growing
number of cross-validation misuse at various places. As lecturers at university
courses on data mining, we tutor students during their first steps with data min-
ing. They have practical assignments with data mining tools like SPSS Modeler,
SAS Enterprise Miner or RapidMiner, and they usually make a lot of mistakes
during the learning process. Furthermore, as researchers, we attend conferences
and read papers that state extraordinary model performances, but sometimes
we fail to reproduce the results or with further investigations it turns out that
the reported performances are optimistically biased. As a final note, we are



Cross-validation: the illusion of reliable performance estimation 3

frequent contestants in data mining competitions, where model performance is
usually measured after the deadline on a hidden test set, and we often see con-
testants being surprised by their bad final performance compared to the online
leaderboard or their own estimations. All these events indicate a problem in the
process design that makes performance estimation unreliable. In the following,
we present some of the most likely causes for these problems.

3.1 Using global information

There are certain application areas where it is very common to have hundreds
or thousands of attributes. In many data mining software suites, it is very hard
to handle so many attributes, so the first step is usually some kind of feature
selection to reduce the number of attributes to a few dozen. If the feature selec-
tion is performed on the whole dataset and cross-validation comes afterwards,
then the selected features already incorporate some information on the test set.

Most people would consider this effect negligable, but we did an experiment
with a dataset of 100 rows, 500 attributes and random binary labels. We did a
feature selection based on information gain, kept the top 10 features, and in the
cross-validation, we have used k-nearest neighbor which was able to learn the
random labels with the average accuracy of 63%. We repeated the experiment
with a dataset of 1000 rows and the accuracy was 54%, still significantly better
than random prediction.

The lesson to be learnt here is that we have to put every supervised method
inside the training block of the cross-validation and cannot learn global infor-
mation before that.

3.2 Using future data

Let us consider a time series prediction problem when we are given a time series
of length N and the task is to create a predictive model for the next value,
given all the past values. This is a regression problem and is usually solved by
assuming that the future value only depends on the k previous values, so we can
transform the long time series segment to a table having N − k rows and k + 1
columns (k for the previous values and one for the next value to predict).

We can use nearest neighbor algorithm with distance metric learning, which is
a very popular technique nowadays [9]. For example, we can learn a Mahalanobis
distance metric for the training vectors of size k and use that for the calculation
of the nearest neighbor. If we use this method, we might get excellent results
with cross-validation with almost zero error, but it will not generalize for future
data from the same time series. The problem here is that in case of leave-one-out
validation, we have all past and future data in the training set. When we try to
predict the test example ti from the vector ti−k . . . ti−1, we have a training vector
ti−k+1 . . . ti with label ti+1, so the correct answer for ti is included in the training
set. Some algorithms, like nearest neighbor with distance metric learning, can
explicitly learn this rule, but other algorithms can also use this information in a
hidden way which produces an unreliable performance estimate.



4 Zoltán Prekopcsák, Tamás Henk, Csaba Gáspár-Papanek

A related problem is when the dataset has some duplicated rows due to
errors in joining tables or other preprocessing steps. When using leave-one-out,
the simple nearest neighbor algorithm will always have zero error for these rows.

3.3 Picking the best model

On small and medium sized datasets, even correctly used cross-validation can
be very misleading when run multiple times. The variance of the performance
estimate is quite high in these cases, so if we run the estimation multiple times
with different model parameters and pick the best, we can get a result that is
far from the real performance.

Let us introduce a simple experiment that will make this problem easier to
understand. We have a binary classification task with 100 training examples
which is quite small but not very unusual in practice. We are considering 100
different models from the family of COIN models. The COIN model is something
that everyone has used before: toss a coin and vote for positive class if heads is
up and vote for negative class when tails is up. It needs no explanation that the
expected error rate will be 50%.

So we take 100 different coins and measure their accuracy on all the 100
training examples (as we would do in the case of cross-validation). From the 100
coins, we choose the one with the lowest error rate. If the coins are fair coins,
then we can be almost sure (with 95% confidence) that our best coin produces
an error rate at most 40%, so we will pick that coin and expect it to behave the
same on future data. This argument might seem a bit unnatural, but we can get
similar results with bigger training sets and higher number of COIN models, so
it shows how the picking the best approach might fail. A more statistical and
precise argument can be found in [8].

We have seen RapidMiner processes which did an iteration over thousands of
differently parameterized models, selected the best, reported great error rates,
but on a hidden test set they finally performed 5-10% worse than expected.
This problem often appears in research papers and data mining competitions
and there is no straightforward solution to avoid it. However, in the following
section, we will try to provide some rules of thumb.

4 Recommended approach

The first step in avoiding the above mistakes is that we should be aware of them
and treat cross-validation results with a bit of mistrust. Second, we can check
for specific errors in the process design. Here we provide a short checklist for the
mistakes that are easy to recognize.

� Do I use the label attribute before cross-validation?

� Do I get a different preprocessing result if I remove the label attribute from
the dataset?



Cross-validation: the illusion of reliable performance estimation 5

� Is there any explicit dependency between distinct rows?

� Are there any duplicate rows in the dataset?

If your answer is no for the above questions then the cross-validation is well
defended from the first two mistakes, but not from picking the best. If you have
a very large dataset, then you can select a holdout dataset for final testing that
you will test only once after the algorithm is ready and all the parameters are
set to optimal. Be aware that if you see a bad result and start running new tests
on that dataset then you are cheating again and the performance estimate will
be unreliable.

In case of small or medium sized datasets, you need a bit of statistics to
make sure that your results are significant and not just due to the variance of
the estimation. You can find the details in the paper of Salzberg [8], but there
is a simple trick that might solve the problem in most of the cases.

In a typical data mining process, you want to optimize the parameters of
a specific algorithm and find the parameters with the best performance. If you
take many possible parameter settings, run a cross-validation with each of them
and report the best result, then you commit the fault of picking the best. Instead,
you can create a single cross-validation and in each training phase you take the
current training set, optimize the parameters on that dataset, and use the best
parameters for the test. Of course, in the optimization part, you will always pick
the best model, but you will test it only once on a previously unseen test set.
You can see the difference in terms of RapidMiner process trees on Figure 1.

There are several drawbacks of this approach. First, you will not receive
the best parameter setting at the end, but the best parameters in each of the
cross-validation folds. Second, it will multiply the runtime with the number of
folds done in the outer cross-validation, but it might be acceptable in the case
of small datasets. On the other hand, you will receive a reliable performance
estimate that you can trust to work the same on future data.

The recommended approach presented above is implemented as a RapidMiner
process and it can be downloaded from our website [2].

5 Summary

We addressed the problem of producing a reliable performance estimation for
classification and regression tasks. We described different performance estima-
tion methods and presented common mistakes in using them through examples
with cross-validation. Finally, we proposed a recommended approach with a
checklist and a RapidMiner process template to help data miners produce valid
performance estimations. We welcome any comments in email concerning the
topic and the examples presented in this paper.



6 Zoltán Prekopcsák, Tamás Henk, Csaba Gáspár-Papanek

(a) (b)

Fig. 1: RapidMiner process with picking the best (a) and the corrected process (b)

References

1. RapidMiner homepage, http://www.rapidminer.com
2. Supporting website with downloadable process template, http://prekopcsak.hu
3. Devroye, L. and Györfi, L. and Lugosi, G.: A probabilistic theory of pattern recog-

nition. Springer (1996)
4. Efron, B. and Tibshirani, R.: An introduction to the bootstrap (1993)
5. Han, J. and Kamber, M.: Data mining: concepts and techniques. (2006)
6. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and

model selection. Proceedings of the International Joint Conference on Artificial
Intelligence, 1137–1145 (1995)

7. Provost, F. and Fawcett, T. and Kohavi, R.: The case against accuracy estimation
for comparing induction algorithms. Proceedings of the Fifteenth International
Conference on Machine Learning (1998)

8. Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended ap-
proach. Data Mining and Knowledge Discovery, 1 (3), 317–328 (1997)

9. Weinberger, K.Q. and Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10, 207–244 (2009)

10. Wolpert, D.H. and Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1 (1), 67–82 (1997)

11. Zhang, P.: On the distributional properties of model selection criteria. Journal of
the American Statistical Association, 87 (419), 732–737 (1992)


