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Bálint CSATÁRI1, Zoltán PREKOPCSÁK2
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Abstract. In this paper, we present two novel class-based
weighting methods for the Euclidean nearest neighbor al-
gorithm and compare them with global weighting methods
considering empirical results on a widely accepted time se-
ries classification benchmark dataset. Our methods provide
higher accuracy than every global weighting in nearly half
of the cases and they have better overall performance. We
conclude that class-based weighting has great potential for
improving time series classification accuracy and it might be
extended to use with other distance functions than the Eu-
clidean distance.
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1. Introduction
Attribute weighting has a long tradition in data min-

ing. These methods are mostly used for feature selection [5]
and for the alternation of distance functions in lazy classi-
fiers [12]. In this paper, we are focusing on weighting for
time series classification, because in this area, lazy classi-
fiers are among the most accurate and robust [14], so there
is a room for improvement with weighting methods. Classic
distance functions like the Euclidean distance, or the Dy-
namic Time Warping [11] (DTW) consider every attribute
the same importance, so with many noisy attributes present
these distance functions fail. Weighting methods give lower
weights for noisy attributes and higher for the most informa-
tive ones according to certain criteria. We call these global
weighting methods because they use one weighting vector
during the whole classification process.

In this paper, we propose two novel weighting meth-
ods for time series classification, which calculate different
weighting vectors for each class, and we call them class-
based weighting methods. The rest of the paper is structured
as follows. In Section 2, we briefly review related work and
mention similar research efforts, then in Section 3 we formu-

late the problem, describe our methods and the implementa-
tion details, while in Section 4, we present empirical results
on a benchmark dataset. Finally, we conclude and outline
some ideas for future work.

2. Related work
A lot of interest has been paid on time series classifica-

tion in the past decade [14]. There has been numerous efforts
to improve classification accuracy [2, 11] and even a data
mining competition has been held [7] to compare different
methods. In spite of these efforts, simple k-nearest neighbor
classifier with Euclidean distance is still considered as one
of the most accurate and robust general solution [14]. It has
been shown that Euclidean distance outperforms many other
time series distance functions when faced with datasets from
diverse domains [6, 2]. One viable alternative is the Dy-
namic Time Warping (DTW) and its extensions [11], but it
increases complexity and results in a slower algorithm than
the simple Euclidean distance calculation. For distance mea-
sure comparisions, one nearest neighbor (1-NN) is an ac-
cepted objective evaluation method [6], so we use this in the
empirical evaluation.

Attribute weighting has been an active research area
in the 1990s, but as feature selection methods became inde-
pendent of weighting and lazy classifiers have been outper-
formed by other methods in most areas, attribute weighting
became a less mainstream area of data mining research. This
explains why we have not found research papers for time se-
ries weighting. Previously, many global weighting methods
have been proposed for general data mining problems [12],
like the ones based on statistical and correlation tests (e.g. in-
formation gain [1]) or instance distances (e.g. Relief [5], Re-
liefF [9]). Furthermore, local weighting methods have also
been introduced, which assign different weights for groups
of instances or for each instance. Our class-based method
is a special case of local weighting methods, and some pa-
pers had a similar approach for datasets with discrete at-
tributes [4], while our work focuses on continous attributes,
as time series data is usually represented this way.
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3. Attribute weighting
In this section, we present our method, which utilizes

attribute weighting to improve classification of time series
data. Our goal is to emphasize specific ranges of sequences
while suppressing others to make class-specific characteris-
tics more obvious for the classifier. The question is what is
the most appropriate way of determining the weights for this.

The main ideas behind our method for weight calcu-
lations are the so-called internal and external average dis-
tances. An attribute has high value during the classification,
if it has a similar value compared with other sequences from
the same class, in other words, if its internal distance is low.
Meanwhile, an attribute showing huge deviation from other
classes, can have a role in differentiating that given class
from others. In other words we could say the external dis-
tance for that attribute is high. In order to formalize this idea,
we have introduced the so-called global internal and global
external average distances. These can be calculated as
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where Xa
i is the value for the a-th attribute of the i-th

sequence, |Ck| is the population count of a class k and |N |
is the total number of sequences (

∑
k |Ck| = |N |).

To make use of these assumptions, with a so-called
weighting function we calculate weights for every attribute
using Dint and Dext values. It is easy to guess that Dext

Dint
ex-

ploits both internal coherence and external deviation, but a
weighting function relying only on internal distances could
be 1

Dint
. A truly positive side of this global weighting ap-

proach is that – as we will see – it can improve the error rate
of an instance based 1-NN Euclidean distance comparison
by extending the process with a simple preprocessing step.

However, we propose a class-based attribute weighting
method which can improve the matching efficiency further.
By creating a customized weighting vector for each class,
the sometimes opposing influence of different classes on the
global weighting vector can be eliminated. In order to create
class-based weighting vectors, we have to determine the in-
ternal and external distances individually for each class. Fig-
ure 1 depicts the comparisons for this class-based method,
which can be formalized as follows:
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Fig. 1. Demonstration of class-based internal and external dis-
tances.

Similarly to global weighting functions, there are many
possibilities of combining these distances in order to create
weighting vectors. In the next section we demonstrate our
benchmark results using two simple and obvious weight-
ing functions similiar to the ones mentioned earlier, dext

dint

and 1
dint

. While in the case of global weighting, the imple-
mentation is straightforward, the utilization of class-based
weighting vectors demand more than a simple preprocessing
step. Here we explain the steps of our modified classification
method, in which we have modified an instance based 1-NN
Euclidean distance comparison in order to make the most of
class-based weighting.

1. After the training set has been acquired, the sequences
are z-normalized, so each sequence has an average of
zero and a standard deviation of one.

2. The dk,aint and dk,aext values are calculated based on the
training set elements for each k class and each a at-
tribute. With this, the individual weighting vectors are
determined for each class (using the dext

dint
or the 1

dint

weighting function). The length of this vector is equal
to the number of attributes.

3. The weighting vectors have to be normalized so the sum
of the elements is equal to the number of attributes.
This step ensures that none of the elements make ex-
treme modification to the sequence. Note that with
the regular 1-NN Euclidean distance comparison the
weights are 1, thus giving the same sum.

4. The training set elements are multiplied with the
weighting vector corresponding to their class, so the im-
portant ranges are emphasized and the incoherent parts
are omitted. After that, the processing of the test el-
ements can commence, with the following steps per-
formed on each incoming sequence.
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(a) The sequence is z-normalized to bring the at-
tributes to the same range as the training set in-
stances.

(b) As the class of the sequence is unknown, it has to
be multiplied with the weighting vectors indepen-
dently. This data is then filled into a max(k)×A
sized T matrix where max(k) denotes the number
of classes, and A denotes the number of attributes.

(c) Since the class of the train set elements are given,
each train set element is compared to the corre-
sponding row of T , using Euclidean distance mea-
sure. The lowest distance train element’s class is
matched with the tested sequence.

Before moving on the the next section and present-
ing benchmark results, we would like to emphasize that the
weights calculated by our method are invariant to offsetting
and constant multiplication thanks to the definition of the
weighting functions. This is important, because the weight-
ing stays the same after any type of data normalization.

4. Results
In this section we present how our attribute weight-

ing method performs against other weighting operators on
a benchmark dataset. The operators we tried and managed
to compete with are built in weighting operators of Rapid-
miner [10] and Weka [13]: the regular 1-NN Euclidean dis-
tance, Gini-index [3], information gain ratio, information
gain [1], Relief [5], ReliefF [9], SVM weighting [13], sin-
gle rule weighting and OneR [13]. We omitted the results
of two other operators, namely PCA weighting and stan-
dard deviation weighting, which in most of the cases pro-
vided worse results than the old but strong strawman, regular
1-NN. Based on our novel methods discussed in the previous
section, we let two global, and two class-based weighting
functions ( 1

Dint
, Dext

Dint
, 1

dint
, dext

dint
, combining the distances

shown in Eq. (1)-(4)) to compete against these.

As a benchmark database, we used the 20 datasets
hosted by the University of California, Riverside (UCR) [8],
which includes time series datasets from many areas of life.
These include human movements (Gun point), shape recog-
nition via contour curves converted into pseudo time se-
ries (Leaf, Faces), word image matching (50words), in-line
process control measurements of processing semiconductor
wafers (Wafer), cardial electrical activity of humans (ECG),
different types of lightning data (Lightning-2, Lightning-
7) and also synthetic datasets (Trace, Synthetic control).
Spreading out this broadly, this database is proven to be a
comprehensive benchmark for time series data classification.

We listed comparison results in Table 1, which shows
classification error rates for the 9 former and the 4 newly pro-
posed classification algorithms. As we expected, the global

weighting functions seem to show similar accuracy as earlier
weighting methods, having an average error of 20.77% and
20.62% on the 20 datasets. However the class-based weight-
ing resulted in an average improvement of 2-3% (error rates
are 19.13% and 18.20%). Also note, that in 9 cases our al-
gorithm provided the best results among the classification
methods.

As we expected, class-based weighting outperformed
global weighting methods, proving that this approach has
a measurable effect on classification error. Comparing our
weighting functions, we can say that 1

dint
seemed to be bet-

ter than the others, which means that internal coherence of
the classes have a huge importance in time series classifica-
tion, at least on this benchmark dataset.

Attribute weighting does not raise complexity during
the classification, but it needs preprocessing while storing
the training set. We have to calculate distances between all
training instances, so it has a quadratic complexity on the
number of instances and a linear complexity on the number
of attributes. The quadratic complexity can be problematic
in the case of huge datasets, but in that case sampling can be
used for the approximation of the average distances and the
weight vectors.

5. Conclusion
We have presented new global weighting functions

for time series classification and a new approach for class-
based attribute weighting. Our class-based methods pro-
vided higher accuracy than global weighting on a widely
accepted time series benchmark dataset. We have to note
that it has a quadratic complexity, so future work might be
needed on calculating approximate weights or creating a lin-
ear weighting method.

Although we presented the operation with the instance
based 1-NN comparison, attribute weighting is rather a pre-
processing task. This means that it can be used indepen-
dently or in combination with other preprocessing methods
to improve classification performance. Besides, weighting
can be extended for other distance functions, like Dynamic
Time Warping, so we will keep on investigating class-based
weighting for various cases.
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50words 36.92 38.68 34.73 37.80 38.24 39.12 38.02 36.92 37.14 36.04 34.95 33.85 33.19

Adiac 38.87 41.43 41.18 32.74 39.64 37.34 32.99 39.64 38.87 38.11 37.85 35.55 35.04

Beef 33.33 33.33 33.33 30.00 26.67 30.00 30.00 36.67 36.67 33.33 33.33 36.67 30.00

CBF 14.78 14.67 13.00 12.56 12.56 17.00 15.33 14.33 12.67 13.44 14.00 6.56 4.67

Coffee 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 0.00 3.57

ECG200 12.00 8.00 12.00 10.00 11.00 10.00 10.00 12.00 12.00 11.00 10.00 10.00 7.00

FaceAll 28.64 19.35 24.97 19.53 20.95 20.06 21.18 28.34 25.62 25.98 31.78 27.81 26.27

FaceFour 21.59 18.18 17.05 15.91 17.05 17.05 13.64 22.73 17.05 19.32 14.77 13.64 9.09

Fish 21.71 22.86 23.43 24.57 23.43 26.29 20.00 19.43 22.29 21.14 18.29 19.43 17.14

Gun Point 8.67 11.33 7.33 10.00 10.00 10.67 16.00 10.00 8.00 10.00 11.33 15.33 16.67

Lightning-2 24.59 26.23 22.95 26.23 26.23 26.23 21.31 14.75 21.31 26.23 24.59 26.23 27.87

Lightning-7 42.47 36.99 39.73 39.73 32.88 32.88 35.62 42.47 41.10 36.99 34.25 27.40 28.77

OliveOil 13.33 13.33 13.33 13.33 16.67 13.33 10.00 13.33 13.33 13.33 16.67 16.67 13.33

OSULeaf 47.93 45.45 45.87 48.35 49.17 47.52 47.11 46.69 44.63 47.93 45.87 48.35 46.69

SwedishLeaf 21.12 21.44 20.48 22.08 21.28 20.80 23.04 20.96 19.36 20.16 20.64 16.64 16.16

Synthetic control 12.00 13.67 13.33 12.67 13.00 11.33 12.33 17.67 11.00 10.67 10.00 8.00 10.00

Trace 24.00 19.00 25.00 21.00 33.00 32.00 27.00 24.00 26.00 25.00 21.00 13.00 8.00

Two Patterns 9.33 46.20 19.73 50.10 14.08 18.50 20.75 11.75 13.52 9.33 12.48 9.50 13.03

Wafer 0.45 0.97 0.68 0.58 0.57 0.44 0.57 0.65 0.63 0.44 0.45 0.58 0.54

Yoga 16.97 16.60 17.90 16.83 15.73 15.70 17.07 17.73 16.67 16.93 16.57 17.47 17.07

Average 21.44 22.39 21.30 22.20 21.11 21.31 20.60 21.50 20.89 20.77 20.62 19.13 18.20

Tab. 1. Classification error percentages of different algorithms.


